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Abstract

In this paper, we propose a numerical algorithm to simultaneously predict the unknown conductivity coefficients and
the unknown boundary data for a steady-state heat conduction problem in an anisotropic medium. The algorithm is
based on a classical boundary element method (BEM) which is combined with a least squares technique. The numerical
convergence and stability of the method proposed is investigated with respect to increasing the number of additional
measurements provided and decreasing the amount of noise added into the input data. © 2001 Elsevier Science Ltd.

All rights reserved.

1. Introduction

Anisotropic media occurs in nature, such as wood,
crystals and sedimentary rocks, and can also be pro-
duced artificially, such as laminated and fiber-reinforced
construction and electronic materials, cables, cylinders
and tubes. Following the rapid increase of their indus-
trial use, the understanding of heat conduction in this
type of material is a great importance. In addition the
production of oil and gas in many reservoirs is seriously
affected by its highly anisotropic structure.

Experimentally, it is difficult to make accurate
measurements of the thermal conductivity tensor, and
analytically, it is difficult to solve the differential equa-
tion in which the elements of the tensor arise. Therefore
numerical methods for anisotropic heat conduction
problems appear to be a very useful tool. It is the pur-
pose of this paper to develop a numerical algorithm to
identify the thermal properties of an anisotropic me-
dium, i.e. its thermal conductivity coefficients.

If the thermal conductivity tensor of an anisotropic
medium is known explicitly and appropriate boundary
conditions are specified, then the temperature distribu-
tion inside the body may be uniquely determined. A
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more difficult problem arises if the thermal conductivity
coefficients are unknown and have to be determined by
supplying some extra information. This may be in the
form of overspecified boundary data or interior tem-
perature measurements. This additional information is
produced by attaching more sensors onto the boundary
of the body or inside it. Thus, in order to reduce the cost
of such an experiment it is important to know how many
extra sensors are required in order to obtain accurate
results. Since the minimum number of sensors required
clearly depends on the location of the sensors, an im-
portant problem is where to place these sensors such
that we obtain reasonable accurate results for the ther-
mal conductivity coefficients with as few extra sensors as
possible.

A number of experimental or numerical methods
have been proposed to evaluate the thermal conductivity
tensor of a heat conductor, or equivalently the hydraulic
conductivity tensor in rocks or soils, see [1-4]. It is the
purpose of this paper to develop a new boundary el-
ement method (BEM), combined with a minimisation
technique, to simultaneously predict the unknown con-
ductivity coefficients and the unknown boundary data.
The numerical convergence and stability of the method
is investigated for various formulations which differ with
respect to the type of the extra information provided
(heat flux or interior temperature measurements) and to
the locations of the sensors which are placed either on
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Nomenclature

A,B,... coeflicient matrices

a,b,c,... arbitrary constants

ki thermal conductivity coeflicients

M the number of additional measurements

N number of boundary elements

q; given values of the heat flux

R the radius of the circular domain

Ry the radius of the circle where interior
measurements are taken

s percentage of noise

T temperature

T; temperature at the nodal point X;

T heat flux

T heat flux at the nodal point ;

X,y space variables

x; space nodes

Greek symbols

p arbitrary constant

€ Gaussian random variable

n coefficient in the boundary integral equa-
tion

Q the solution domain

r the boundary of the solution domain

normal vector to a surface
standard deviation

Subscripts and superscripts

j values at the nodal point
a the analytical values
n the numerical values

the boundary of the solution domain or inside the
solution domain. A practical way to determine the
minimum number of measurements necessary to accu-
rately identify the conductivity coefficients is also sug-
gested. It consists of starting with a small number of
measurements and adding additional sensors until all the
values of the conductivity coefficients do not change.
The convergence and the stability of the method are
investigated in detail with respect to increasing the
number of extra measurements provided and decreasing
the amount of noise added into the input data in order
to simulate measurement errors.

2. Mathematical formulation

In this paper, we investigate the steady heat con-
duction in an anisotropic medium which is in a domain
Q and we assume that heat generation is absent.
Therefore the temperature 7T satisfies the equation

0:T 0*T 0T
ki @(Jﬁy) + 2k12?ay(x,y) + kzza*yz()ﬁy) =0
for (x,y) € Q, (1)

where k; is the thermal conductivity tensor which is
assumed to be symmetrical and positive definite so that
Eq. (1) is of the elliptic type. Physical and thermal
properties of the medium are assumed to be constant
and thus the coefficients k;; are independent of the space
variables.

If at every point on the surface of the body the
temperature, or the heat flux, is known and the tem-
perature is specified at least at one point, and the ther-
mal conductivity tensor is given then the temperature

distribution inside the solution domain may be uniquely
determined. A different and more difficult situation
occurs when the thermal conductivity tensor is unknown
and some additional information is supplied. If the
temperature is known at all points on the boundary then
the extra information that is available may be the heat
flux measurements at some points on the boundary, or
temperature measurements inside the solution domain.

In this paper, we use a BEM, combined with a least
squares technique, to simultaneously provide the un-
known boundary data and the thermal conductivity of
the medium. In order to illustrate the numerical tech-
nique we consider a smooth boundary and for simplicity
we take the domain Q to be {(x,)[x*> +3* < R*}, which
is a circle of radius R. We have considered several other
smooth boundaries and the general conclusions are
similar to those presented here and therefore we have
not presented these results.

Following a classical BEM, see [5], the boundary
of the solution domain is discretised into a series of
small elements I'; for j =1,N having the end-points
x;, 1(¢-1,1) and  x;(x;,») and the mid-point
', = (¥, 7;). Further, we assume that the elements I'; are
increasingly numbered in an anti-clockwise direction
starting from the point of zero angular polar coordinate.

In this paper, we investigate three formulations
which differ with respect to the type of the extra condi-
tion imposed (heat flux or temperature measurement)
and the location of the sensors attached to the body.

1=t

Formulation I. Here we assume that the temperature is
given at every point on the boundary I' = 0Q2 so that the
temperature vector

T=(T))jmn = (T()) 1 n 2
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is known. More information is given by imposing the
heat flux at M consecutive nodal points (%;,j = 1, M),

,  oT _ .
]}:&T(xi):qj forj=1,M, (3)

where M is a positive integer, v is the normal vector to
the surface I' and

0

s (k12 cos(v, x)

0
= (ki cos(v,x) + (ka1 cos(v,y)) P +

+ kay cos(v,y)) ° 4

dy’
The convergence of the method is investigated for vari-
ous numbers of flux measurements, M € {3,... N}.

Formulation II. Here we again assume that the tem-
perature is given at every nodal point but the points
where the heat flux are available are spread over the
whole boundary I'. Thus the discretised heat flux
boundary condition imposed is given by

T(I/‘—I)[N/MHI =gq; forj=1M, (5)

where 7" and M have the same meaning as in the pre-
vious formulation and for every real number x, [x] is the
largest integer smaller than x.

Formulation I1I. Here we assume that the temperature or
the heat flux is known at every nodal point and the
temperature is also prescribed at M interior points inside
the solution domain. For convenience we take the points
where these measurements are taken to be equally dis-
tributed on a circle of radius R, < R. Other locations for
the extra temperature measurements have been investi-
gated but the results obtained from this investigation
best illustrate the ideal location of the extra temperature
measurements. The numerical convergence of the
method is investigated for various values of the radius Ry.

For all three formulations considered, we use the
BEM combined with a least squares technique in order
to simultaneously predict the unknown boundary data
and the thermal conductivity tensor k;. The number of
heat flux or interior temperature measurements
necessary to obtain accurate results is investigated.

It should be noted that the problems which we are
considering do not always have a unique solution. This
may be illustrated by the following situation. We assume
that the temperature 7, is known at every point on the
boundary and inside the solution domain and the heat
flux ¢o is known on the whole boundary. Thus, the
following equations hold:

o’T o*T o*T
ki—— o (x,») +2k12%(x7)’) +kzzaT}2(X,y) =0
(x,y) € Q, (6)

T(x>y) = TO(xvy) (x>y) € QUdQ, (7)
aav];( 7)’)—‘10 (X,y) 6697 (8)

where 7j and ¢y are the temperature and the heat flux
prescribed. We assume that £° = (&0}, %, k),) is a solu-
tion of the problem, i.e., the pair (ko, Ty) satisfies the
Egs. (6)-(8). From Eq. (8) we obtain

6]0:6—+:VT0'V§> )
where v{ is given by the equation

Ve = (kolx + K%y, Kx 4+ k3,p). (10)
Next we investigate the uniqueness of the solution of this
problem, i.e. we look for a pair (k,T) # (k°, Tp) which

satisfies Eqs. (6)—(8). From Eq. (7) we obtain 7 = T; and
we look for a vector k # k° which satisfies

kuzzfuknszg +k222277;:0 in Q, (11)
VT, -vi =VTy-vf on dQ, (12)
where

vt :Ile(k”x+k12y,k12x+k22y). (13)

Now we illustrate the non-uniqueness of the solution by
considering the following three situations:
(1) The temperature is a constant function, namely

Ty(x,y) = ¢ for (x,y) € Q. (14)

In this case the first- and second-order derivatives of the
temperatures are zero and the Egs. (11) and (12) become
trivial. Therefore any vector £ is a solution of the
problem and hence the thermal conductivity tensor of
the medium cannot be identified.

(it) The temperature is a linear function, namely

To(x,y)

where a,b and c are constants and a®> + b> # 0. In this
case the second-order derivatives of the temperature are
zero so Eq. (11) vanishes and Eq. (12) becomes

=ax+by+c for (x,y) €Q, (15)

b
(kix + kioy) +— (klzx + kny)

SRS

b
(k(l)lx + klz)’) (k?zx + kzz)’) (16)

and if we identify the coefficients of x and y we obtain

ak“ + bklz = ak?l + bk(l)27

17
akyy + by, = ak?z + bkgz. ( )
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If a=0,b#0 we obtain k= (8,k),k%),f € R and if
b =0,a # 0 we obtain k = (k?,, k%, B), B € R. Hence the
solution of the problem is not unique and the thermal
conductivity tensor cannot be identified. If a,b # 0 we
obtain

b a
IE: (k(l)l_;ﬁak?2+ﬁ7k22_gﬁ)v ﬁ€R7 (18)

1.e. the set of solutions of the problem is a one-dimen-
sional subspace of R’. Again we cannot identify the
thermal conductivity tensor of the medium but if one of
its components is known then we can find the other two

components.
(iii) The temperature is a quadratic function, namely
T(x,y) = ax® + bxy + ¢y* for (x,y) € Q (19)

with non-zero constant coefficients «¢,b and c¢. In this
case, from Egs. (11) and (12), we obtain the following
system of linear algebraic equations:

ak“ + bklz + Ckzz = 07

2aky; + bkyy = 2ak?, + bk,

bk + 2(a + c)kia + bkay = bk?l +2(a+ c)k?z + bkgz,
bkiy + 2cky, = bk, + 2ck),. (20)
Since £k, is a solution of the problem we have

ak?, + bkY, + ck3, = 0 and thus the system (20) may be
written as

Ak = 4k, (21)
where the matrix A4 is given by
a b c
2ba 2(a[ik c) 2 (22)
0 b 2¢
It can be easily seen that if
A= (a+c)(b*—4dac)=0 (23)

then rank(A4) =2 and the solution of the system given by
Eq. (21) is a one-dimensional subspace of R*, namely

b b
b= (- gob bt Bih - ) BeR @4

Thus, we can uniquely identify the thermal conductivity
tensor of the medium only if one of its components is
known a priori.

It should be noted that the set of solutions given by
Egs. (18) and (24) may be further restricted by imposing
the constraints

ki =0, k=0, kn>0, kpkn—kj >0, (25)

which ensures that the thermal conductivity tensor is
positive definite, i.e. Eq. (1) is of the elliptic type, but the
solution is still not unique. In conclusion, from the three

situations considered it may be concluded that if a
constant, linear or quadratic temperature is prescribed
then the thermal conductivity tensor of the medium
cannot be identified, no matter how many extra
measurements are taken. Thus, in order to identify the
coefficients k;; then more realistic temperatures, such as
higher-order polynomials, trigonometric or exponential
functions, etc. must be imposed. If this is the situation
then the unknown boundary data, as well as the thermal
conductivity tensor, may be accurately predicted if some
extra information about the heat flux, or the interior
temperature, is available. In this paper, we propose a
BEM to identify the thermal conductivity tensor and we
investigate the numerical convergence with respect to the
number of extra measurements provided, the location of
the sensors and the level of the noise added into the
input data.

3. Description of the method

By applying a classical BEM, see [5], to the governing
partial differential equation (1) we obtain the following
discretised equation

N

N@TE) =Y Td;(x,k) = Y T;Bi(x,k), (26)

=1 =1

where #(x) =1 if x € Q and 5(x) =1 if x € I' and the
vectors T = (7}),_, y and T' = (T}),_,  contain the val-
ues of the temperature and the heat flux on the bound-
ary. The non-linear functions 4; and B; depend on the
coefficients k; and may be analytically evaluated, see [6].

Eq. (26), applied at each of the nodal points
X,j= 1,N, gives rise to the following system of N
equations

N
> _[y(R)T) = By(k)T] =0 fori=TN, (27)
=1

where the non-linear functions 4;; and B;; are given by

By = B5.k) + 30, (28)

Ay = A4;(x;, k), 5%

If the temperature is known at M interior points and

Eq. (26) is applied at each of these points then this gives
another M equations, namely

N
> y(k)T] = By(k)T;) =0 fori=N+1,N + M.
J=1
(29)

Thus, for the Formulations I and II we obtain a non-
linear system of N equations, namely
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fil,T,T') =0 fori=1,N (30)

with N — M + 3 unknowns, while for Formulation III
we obtain N 4+ M equations

fz(&LZ,)=0 forz:m (31)

and N + 3 unknowns.

We note that the functions f; are linear with respect
to the vectors T and T’ but highly non-linear with re-
spect to the coefficients k;;. The numerical solution of
the problem is constructed by minimising the sum of
squares

K
> 2k, T,T') — min (32)
i=1
under the constraints
ki 20, k=0, kp=0, (33)
kyiky — k122 >0, (34)

where K =N for the Formulations I and II and
K =N+ M for the Formulation III. Numerically, the
sum of the squares (32) is minimised using the NAG
subroutine EO4UPF, which is designed to minimise an
arbitrary smooth sum of squares subject to constraints.
This may include simple bounds on the variables, linear
constraints and smooth non-linear constraints. The
subroutine uses a sequential quadratic programming
(SQP) algorithm in which the search direction is the
solution of a quadratic programming problem, see [7]. It
should be noted that it is important to impose the con-
straints (33) and (34) in order to generate feasible solu-
tions since unconstrained minimisation was found to
produce physically meaningless solutions. In addition,
more constraints may be imposed, such as upper bounds
on the variables, if any estimates of the maximum values
that the conductivity coefficients may take are available.
By imposing more constraints then the rate of conver-
gence of the minimisation process increases. Since an
initial guess must be specified for the minimisation
process, the rate of convergence is also improved if the
initial guess is close to any minimum or maximum es-
timates available for the solution of the problem.

4. Numerical results and discussions

In order to illustrate the numerical technique, the
problems formulated are solved in a plane domain
Q = {(x,y)]x* + »* < 1}, i.e. the two-dimensional disc of
radius one but other domains, with or without corners,
may be considered.

As mentioned in Section 2, in order to uniquely
identify the coefficients k;; then the temperature must not
be a quadratic, linear or constant function. Therefore, in

order to illustrate the convergence of the algorithm we
consider the operator L given by

T T T
L(T)(x,y) = 5@(3‘,,” +4$ay(x7)’) +w(%y) =0
for (x,y) € Q, (35)

which governs the heat diffusion in an anisotropic me-
dium with the thermal conductivity tensor given by
kiy =5,k =2 and ky;; = 1 and the analytical tempera-
ture to be retrieved is given by the cubic function

3 3

T(x,y):%—xzy—b—xyz—i-y—. (36)

3

The test example (35) and (36) was chosen such that the
determinant of the conductivity coefficients, i.e.
|kij| = kikx — k3, is not too small. It is known that the
smaller the value of |k;|, the more asymmetric are the
temperature fields and the heat flux vectors. Therefore,
the smaller the value of |k;| the more difficult it is to
determine the numerical solution. Thus, in order to
maintain reasonable accuracy, the determinant of the
conductivity coefficients must not be too small, see [8].
Numerous other examples for anisotropic media with
different thermal conductivity tensors have been inves-
tigated but the same conclusions may be drawn to those
using the test example expressed by Egs. (35) and (36)
and therefore the detailed results of these investigations
are not presented.

The number of boundary elements used to discretise
the boundary of the domain was taken to be N = 80 but
the results which are obtained for larger values of N are
found to have very similar behaviours. The accuracy of
the numerical results is investigated for various numbers
of measurements, namely M € {3,...,80}.

Arbitrary values may be specified as an initial guess
for the unknown boundary data and the conductivity
coefficients. The numerical results presented in this
paper have been obtained for three different initial
guesses for the conductivity coefficients, denoted by (i),
(ii) and (iii) as follows:

(1) kll = 10, k|2 = 007 k22 = 107 (37)
(i) ky =10, kp=05, kyn=3.0, (38)
(lll) kll = 10, k|2 = 20, k22 = 4-07 (39)

which have been chosen in order to ensure that the initial
guess is not too close to the exact solution. A constant zero
initial guess was specified for the unknown values of the
heat flux or of the temperature on the boundary and these
values are not too close to the exact solution.

Starting with these initial guesses, the BEM and a
least squares technique are used to simultaneously pre-
dict the values of the thermal conductivity tensor and
the unknown boundary data.
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4.1. Formulation I

In this formulation we apply the method described in
Section 3 for three extra heat flux measurements and
then we increase the number of extra measurements M
by introducing at each step one additional sensor at the
next available nodal point. The numerical results for the
conductivity coefficients obtained by starting with
the initial guess (i) are presented in Fig. 1. It can be seen
that for small values of M the solution is inaccurate but
if M is larger than about 40 then the exact solution
k = (5.0,2.0,1.0) is retrieved with an error which is less
than about 0.25%. It should be mentioned that the
number of extra measurements necessary to obtain ac-
curate results depends on the test example and therefore
may not be a priori estimated. However, we note that for
small values of M the curves obtained for the conduc-
tivity coefficients oscillate but then they become constant
when M increases and all the coefficients k;; approach
their exact values. Therefore in order to obtain an ac-
curate solution we may perform the calculations starting
with three extra measurements and increasing the
number of measurements M until the numerical results
obtained for the conductivity coefficients cease oscillat-
ing and become constant. Various other test examples
have been investigated and it was found that, in general,
the curves obtained for the coefficients k; have high
oscillations for relative low values of M but then they
always become horizontal as M increases.

Therefore the method may be applied to identify the
conductivity coefficients if we begin with three sensors
attached to the body and then add more sensors for heat
flux measurements until a constant value for the coef-

Fig. 1. The numerical solution for the conductivity coefficients
ki (=), kia (- - -) and kx (---) obtained by starting with the
initial guess (i), as a function of the number of heat flux
measurements M, for the problem considered in Formulation I.

ficients k;; is obtained. For example, for the Formulation
I and the initial guess (i), the minimum number of
measurements for which the numerical solution is
accurate is M = 40, i.e. the heat flux is required on the
whole upper half of the boundary.

Fig. 2 presents the numerical results obtained for the
heat flux through the boundary for M = 20,30 and 40
extra measurements. It can be seen that as M increases
then the numerical solution approaches the exact solu-
tion and for M = 40 extra measurements that the nu-
merical solution is a very good approximation to the
exact solution. Similar results have been obtained for
various initial guesses. Figs. 3-5 present the numerical
solutions obtained for each of the conductivity coef-
ficients kyy, k> and ky, respectively, for various initial
guesses. It can be seen that for all the initial guesses
considered, the same algorithm of adding more
measurements until the coefficients &;; becomes constant
may be applied to identify the number of extra mea-
surements necessary to obtain accurate results. It should
be noted that the horizontal parts of the curves obtained
by plotting the coefficients k; as a function of the
number of measurements appear at approximately the
same value of M for various initial guesses. Therefore, it
may be concluded that the minimum number of values
of M which are necessary to identify the thermal con-
ductivity tensor depends only on the test example and on
the location of the sensors, and it does not depend on the
initial guesses for the conductivity coefficients.

Various test examples have been investigated and
similar results have been obtained. Therefore it may be
concluded that the numerical algorithm presented for

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6/2m

Fig. 2. The numerical solution obtained for the heat flux
through the boundary for the inital guess (i) and various
numbers of heat flux measurements, namely M =20 (---),
M =30 (- - -) and M = 40 (o) in comparison with the analytical
solution ( — ), for the problem considered in Formulation I.
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12+

Fig. 3. The numerical solution obtained for the conductivity
coefficients k;; for various initial guesses for the thermal con-
ductivity tensor, namely, initial guess (i) ( — ), initial guess (ii)
(- - -) and initial guess (iii) (- - -), for the problem considered in
Formulation .

the Formulation I is convergent with respect to in-
creasing the number of extra measurements.

4.2. Formulation 11

In this formulation we use the same method of
adding more information until constant values are ob-
tained for the conductivity coefficients. Unlike Formu-

0 10 20 30 40 50 60 70 80
M

Fig. 4. The numerical solution obtained for the conductivity
coefficient kj, for various initial guesses for the thermal con-
ductivity tensor, namely, initial guess (i) ( — ), initial guess (ii)
(- - -) and initial guess (iii) (- - -), for the problem considered in
Formulation L.
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0 10 20 30 40 50 60 70 80

M

Fig. 5. The numerical solution obtained for the conductivity
coefficient k, for various initial guesses for the thermal con-
ductivity tensor, namely, initial guess (i) ( — ), initial guess (ii)
(- - -) and initial guess (iii) (- - -), for the problem considered in
Formulation I.

lation I, the heat flux measurements are not taken at
consecutive nodal points but instead they are spread
over the whole boundary.

The numerical results obtained for the conductivity
coefficients k;; for the Formulation II, initial guesses (ii)
and (iii) and various values of the number of extra
measurements are presented in Fig. 6. Even if the nu-

.
Ny

|
N

i
n
i
2~ **-*%HH@*****H*****HH****

0 T T T T T T T 1
0 10 20 30 40 50 60 70 80
M

Fig. 6. The numerical solutions obtained for the conductivity
coefficients for various initial guesses namely, k&, for the guesses
(ii) (—), and (iii) (o), k1 for the initial guesses (ii) (- - -) and (iii)
(*) and ky, for the initial guesses (ii) (- --) and (iii) (e), for the
problem considered in Formulation II.
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00 01 02 03 04 05 06 07 08 09 1.0
6/2m

Fig. 7. The numerical solution obtained for the heat flux
through the boundary for the initial guess (ii) for M =3 (- - -)
and M = 5 (o) heat flux measurements, in comparison with the
analytical solution ( — ) for the problem considered in Formu-
lation II.

merical solutions for the conductivity coefficients are
oscillatory for particular values of the M, for example
M =4 and M = 27 it can be seen that we may identify
horizontal parts of the curves k;; even for small values of
M. The numerical solution obtained for the heat flux
through the boundary for M =3 and 5 heat flux
measurements and initial guess (ii) are presented in Fig. 7
and these are found to be in good agreement with the
exact solution. Thus, for the test example considered, the
conductivity coefficients may be identified using only a
small number of heat flux measurements if these
measurements are spread over the whole boundary.

Overall, from the numerical results obtained for the
Formulations I and II we may conclude that the method
presented produces accurate results for the thermal
conductivity tensor, provided sufficient heat flux
measurements are taken. It was also found that in order
to reduce the number of heat flux measurements neces-
sary to obtain accurate results, the measurements should
be spread over the whole boundary rather than being
grouped on only a part of the boundary. However, if a
part of the boundary is not accessible for heat flux
measurements, accurate solutions may be obtained if
sufficient heat flux measurements are provided on the
remainder of the boundary.

4.3. Formulation IIT

In this last formulation, the temperature is specified
at some interior points, rather than specifying extra
boundary conditions. We assume that the temperature is
known on half of the boundary, namely on I'| =

{zeTIl|0(z) € [0,n)}, where 0 is the polar angular co-
ordinate. The heat flux is assumed known on the re-
mainder of the boundary, namely on [,=
{z €T|0(z) € [n,2m)}. The interior measurements are
taken on a circle of radius Ry < R and the numerical
performance of the method is investigated for various
values of the radius R,.

Fig. 8 shows the numerical solution obtained for the
conductivity coefficients for various numbers of interior
temperature measurements spread over the whole of the
circle of radius Ry = 0.5 for the initial guess (i). We note
that accurate results are obtained for small numbers of
interior temperature measurements. Although not pre-
sented here, it is reported that the solution obtained for
the unknown boundary data was found to be in very
good agreement with the exact solution even for small
values of M. Accurate results are obtained for other
initial guesses using a small number of extra measure-
ments, as can be seen in Fig. 9 which presents the nu-
merical solutions for the conductivity coefficients
obtained using the described algorithm with the initial
guesses (ii) and (iii). Similar results are obtained for
various values of the radius R, where the extra tem-
perature measurements are taken. Fig. 10 presents the
error in evaluating the thermal conductivity tensor given
by

e = ||k, — kall, (40)
where k, = (5,2,1) is the exact solution and k, is the

numerical solution for the conductivity coefficients ob-
tained using the method described, for various values of

Fig. 8. The numerical solution for the conductivity coefficients
kiy ( =), kia (- - -) and kp (---) obtained by starting with
the initial guess (i), as a function of the number of interior
temperature measurements M, for the problem considered in
Formulation III.
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Fig. 9. The numerical solutions obtained for the conductivity
coefficients for various initial guesses, namely, k;; for the
guesses (ii) ( — ), initial guess (iii) (o), ki, for the initial guesses
(ii) (- - -) and (iil) (*) and &, for the initial guesses (ii) (- - -) and
(iii) (»), for the problem considered in Formulation I11.

the radius R, using M = 40 extra temperature measure-
ments. It can be seen that the results obtained are
comparable for a large interval for the radius Ry but the
accuracy decreases if the measurements are taken too
close to the centre of the domain (hence very close to
each other) or too close to the boundary (hence too close
to the given boundary data). Therefore measurements in
these regions should be avoided. This confirms the

1*10'—
5+10°
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110"~
5°10°—

f] Kok, |l

1*10%
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1710° T I T | 1
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Fig. 10. The error in evaluating the conductivity coefficients for
the initial guess (i), as a function of the radius R, where the
interior temperature measurements are taken, for the problem
considered in Formulation IIIL.

conclusion of the previous formulations, namely that the
more spread out are the points where the sensors are
located, the more accurate are the numerical results.
Overall, from the numerical results obtained for
Formulation III it may be concluded that the thermal
conductivity tensor may be retrieved with a small
number of interior measurements. Therefore, if the heat
flux is available only on a small part of the boundary but
interior measurements may be taken, then the latter
approach should be adopted rather than using many
heat flux measurements that are concentrated on a small
part of the boundary. However, it should be noted that
the results obtained with the heat flux measurements
spread over the whole boundary are comparable with
those obtained with interior temperature measurements.

5. Stability of the method

Next, the stability of the proposed method is inves-
tigated by perturbing the given data with Gaussian
random variables of zero mean and standard deviation

¢ = Max (ﬁ), (41)

where Max is the maximum value of the input data to be
perturbed and s is the percentage of the noise added.
Although not presented here, it is reported that, in
comparison with their corresponding results which were
obtained without noise added into the input data, the
curves for k; obtained with noisy data have only small
oscillations but the horizontal parts of the curves are still
easily identified. Thus, the same algorithm of identifying
the flat parts of the curves k; may be applied to predict
the conductivity coefficients even if the data is noisy.

The numerical results for the conductivity coefficients
obtained with M = 40 extra measurements for various
levels of noise for the three formulations considered are
presented in Table 1(a), (b) and (c).

It can be seen that as the amount of noise s decreases
then the numerical solution approximates better the
exact solution, while remaining stable, for all the for-
mulations considered. Various test examples have been
investigated and the same conclusions were drawn.
Therefore we may conclude that the proposed numerical
algorithm produces a convergent and stable numerical
solution with respect to increasing the number of extra
measurements and decreasing the amount of noise.

By comparing the results obtained for noisy data for
the three formulations considered it can be seen that as
the level of noise increases then the error in evaluating
the conductivity coefficients increases much faster for
the Formulations I and II in comparison with the For-
mulation III. Therefore it may be concluded that the
numerical solution produced by the described algorithm
is more sensitive to the noise added into the heat flux
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Table 1

The numerical results and the percentage error for the conductivity coefficients obtained with M = 40 extra interior temperature
measurements and various level of noise added into these measurements, for the problems considered in (a) Formulation I,

(b) Formulation II and (¢) Formulation III

kll k12 k22 Error (%))

(a)

0% noise 4.996667 1.999085 0.993407 0.135909
1% noise 4.985998 1.998379 1.009449 0.309821
2% noise 4.960864 1.995809 1.047066 1.120178
3% noise 4.934191 1.996782 1.089289 2.025973
(b)

0% noise 4.996490 1.998825 0.993368 0.138665
1% noise 4.966667 1.985563 0.998294 0.663934
2% noise 4.918598 1.965479 1.019577 1.653405
3% noise 4.858708 1.941663 1.052711 2.952123
©

0% noise 4.992938 1.998069 0.994354 0.168798
1% noise 5.010916 2.003901 0.995275 0.228548
2% noise 5.029023 2.009779 0.996223 0.563391
3% noise 5.047263 2.015703 0.997200 0.910717

measurements than to the noise added into the interior
temperature measurements. Thus, if interior tempera-
ture measurements are available then they should be
used since the numerical solution obtained is more stable
than the numerical solution obtained with the same
number of heat flux measurements.

6. Conclusions

In this paper, we have proposed a numerical method to
identify the thermal properties of a heat conductor using
overspecified boundary data or interior temperature
measurements for a steady-state heat conduction problem
in an anisotropic medium. The numerical algorithm
proposed combines a BEM and a least squares technique
in order to simultaneously predict the unknown conduc-
tivity coefficients and the unknown boundary data. The
minimum number of measurements necessary to accu-
rately identify the conductivity coefficients was also in-
vestigated. A practical way to identify the thermal
properties of the material using the minimum number of
sensors was suggested. The method is based on starting
with a small number of extra measurements and adding
more sensors until constant values are obtained for the
thermal conductivity coefficients.

The numerical convergence and stability of the method
was investigated for various formulations, different with
respect to the type of the extra information provided (heat
flux or interior temperature measurements) and to the
location of the sensors on the boundary of the solution
domain or inside the solution domain. It has been found
that the numerical algorithm proposed is convergent with

respect to increasing the number of extra measurements.
The numerical solution obtained for the thermal con-
ductivity tensor was found to be in good agreement with
the exact solution, provided that the number of extra
measurements available is sufficiently large.

The identifiability of the inverse problem considered
was investigated for both exact and simulated noisy
data. Overall, from all three formulations investigated, if
may be concluded that the numerical algorithm pro-
posed produces a convergent and stablé numerical
solution with respect to increasing the number of extra
measurements provided and decreasing the amount of
noise added into the input data. Thus, the method
proposed provides an accurate means of recovering the
material properties.
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